
Architectural Metadata
for Memory Safety

Dr. Nathaniel “nwf” Filardo

2024 Dec 4

2

▪ Former CMU physics then CS undergrad, 410 student & TA, 213 instructor, ...
• You can blame me for swexn()

▪ Contractor for SCI Semi, previously postdoc at Cambridge and researcher at Microsoft
• I am not speaking on behalf of any employers. Opinions herein are mine.

• None of this should be taken to be information about product plans.

▪ I prefer talks with interrupts enabled; please ask questions as they arise

Who am I?

3

▪ Software security (or: “how are buffer overflows still a thing?”)

▪ Pointer authentication (ARMv8.3, ~2017)

▪ Pointer coloring (ARMv9 MTE, ~2023)

• Newly on market: Google Pixel 8 (“Tensor G3” CPU), October 2023

▪ Upgrading pointers (CHERI; commercial availability in 6 months to ~5 years)

▪ Safe languages on safe architectures

Outline

4

▪ Memory safety (esp. spatial, temporal)

▪ Metadata in pointers: authentication & coloring

▪ Memory capability

Learning Goals

Modern Computer Architecture:
Unsafe at Any Speed?

5
Ralph Nader. Unsafe at Any Speed. (1965) Kamp. Linear Address Spaces: Unsafe at Any Speed. (2022)

https://nader.org/books/unsafe-at-any-speed/
https://queue.acm.org/detail.cfm?id=3534854

CVEs and High Severity Bugs from (Lack of) Memory Safety

6

CVSS Severity Count Over Time (as of 22 Jul 2022)

NVD - CVSS Severity Distribution Over Time (nist.gov)

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

CVEs and High Severity Bugs from (Lack of) Memory Safety

7Matt Miller. Trends, challenge, and shifts in software vulnerability mitigation. (BlueHatIL 2019)

https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

Modern Architecture Unsafety
Very Short, Not At All Comprehensive, Examples

8

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

Misbehaving C Program: Spatial & Referential Safety Violations

foo:
 mov w8, #65
 strb w8, [x0, #16]
 strb w8, [x0, #32]
 ret
main:
 sub sp, sp, #48

stp x29, x30, [sp, #32]
add x29, sp, #32

 mov x0, sp

 bl foo

 ldp x29, x30, [sp, #32]
 mov w0, wzr
 add sp, sp, #48
 ret // x30

9

Stores relative to
address in x0

x0 holds address
of buf on stack

AArch64

Stack as of entry to foo()

sp+32 main’s RA & FP

sp+16 pad[0] … [15]

sp+0 buf[0] … [15] a0 = &buf[0]

Several things go wrong:
1. Write outside of allocation (lack of spatial safety)
2. Corrupt saved return address (lack of integrity)
3. Jump to corrupted address when main()

“returns” (lack of referential safety)

10

▪ Memory is there to be (re)used
• C language and compiler reuses stack memory aggressively by design

• Heap allocator reuses freed objects for new ones

▪ What about use-after-free?

 char *p = malloc(1024); // say: p == 0x15410DE0U

 free(p);

 char *q = malloc(1024); // quite likely: q == 0x15410DE0U

 strcpy(p, “oh no”); // p == q, but different objects!

Temporal Safety

Architecture insufficiently informed:

1. Nobody told the CPU about the buf object (its extent, lifetime, type, &c)

2. When code wrote out of bounds, the store silently corrupted memory

3. That memory was holding a pointer, but CPU just thinks “bytes”

4. Deallocation and reuse of memory not communicated to CPU

C pointers compiled to machine words, stored as bytes in memory.

Architecture Enables Safety Violations

Allocation

Virtual
address
space

11

Address (64 bits)

6
4

-b
it

p
o

in
te

r

12

▪ Rewrite the world in a safe language!
• LISP, Scheme, Rust, Java, JavaScript, ML, Ur/Web, Haskell…

• Different data representations, operational semantics, static type systems…

▪ Safe?
• Array index errors throw exceptions; other spatial errors impossible*

• Temporal errors impossible*

* Some assumptions apply; see next slide

OK, But That’s Just C!

▪ A staggeringly large amount of software already exists.
• OpenHub.net estimates ~10B LoC of C, ~3B LoC of C++ just in the open world.

▪ That probably works out to $130G - $1.3T to rewrite everything.

▪ A lot of effort in optimizing that software! FFI bridges for the stuff we like?
▪ Hand-tuned, specialized implementations... like xz!

▪ Correctness can be subverted by foreign code!

▪ Language correctness often depends on (huge) runtime systems!
• Written in C (or something like it)!

▪ By humans!

What About All The Stuff We Can’t Rewrite?

13

https://openhub.net/languages/c
https://openhub.net/languages/cpp

▪ Lots of people have tried lots of things:
• Software tricks: stack canaries, guard pages, ASLR, W^X, fat pointers, …

• Static analyses: symbolic execution, fuzzing, …

• Languages: Ada, ML, Haskell, Java, JavaScript, C#/.Net, Rust, …

• Computers: System/36, iAPX 432/BiiN, …

• Architectural edits: BTI, continual excavation below ring 0, …

What Have We Tried Doing?

14

15

Increasingly popular “new old thing” is to add metadata to existing architecture:

▪ Arm “Pointer Authentication Code” (PAC) integrity checks (commercialized ~2017)
• Make it harder to “forge” pointers / easier to detect forgeries

▪ Arm “Memory Tagging Extension” (MTE) “lock and key” covariance (~2023)

• Make it harder to access memory out of bounds or after free

▪ CHERI memory capability system (2025?)
• Deterministic memory safety and software compartmentalization

What Now?

Arm’s Pointer Authentication
Embedding Cryptographic Signatures

16

▪ Traditional stack allocation buffer overflows targeted the return address
(Historically, point into on-stack shell code; now, “Return Oriented Programming” chain)

▪ Can we authenticate the real return address & make forgeries crash?

Recall: Architecture Enables Safety Violations

Allocation

Virtual
address
space

17

Address (64 bits)

6
4

-b
it

p
o

in
te

r

Ret Addr

Architecture insufficiently informed:

1. Nobody told the CPU about the buf object (its extent, lifetime, type, &c)

2. When code wrote out of bounds, the store silently corrupted memory

3. That memory was holding a pointer, but CPU just thinks “bytes”

4. Deallocation and reuse of memory not communicated to CPU

C pointers compiled to machine words, stored as bytes in memory.

Architecture Enables Safety Violations

Allocation

Virtual
address
space

18

Address (64 bits)

6
4

-b
it

p
o

in
te

r

PAC-ing Extra Bits

Allocation

Virtual
address
space

19

Address (≈40 bits)

64
-b

it
 S

ig
n

ed
p

o
in

te
r

PAC (≈24 bits)

▪ Can we authenticate the real return address & make forgeries crash?

▪ Carve out something sizable, like 24 bits, for signature bits, at the top of pointers
Systems generally required sign-extension anyway! ("canonical address")

▪ Add instructions to compute and verify PAC.
• Attempting to use a PAC-signed pointer directly will trap; bits not sign extension!

• Verification failure writes “error code” to PAC bits; will also trap if used.

Ret Addr

Arm - Understand Arm Pointer Authentication

Arm - Understand Arm Pointer Authentication Qualcomm - Pointer Authentication on ARMv8.3

https://learn.arm.com/learning-paths/servers-and-cloud-computing/pac/
https://learn.arm.com/learning-paths/servers-and-cloud-computing/pac/
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf

20

▪ Cryptographically combine:
1. The pointer’s value

2. A secret value (from a kernel-managed control register)

3. A “context” word (TBD)

▪ Cryptography? Secrets?

• Make it hard to “forge” pointers, even if some have leaked

• More than one secret: sw sign for different purposes (stack pointer, function pointer, data pointer, …)

▪ Context?
• Further differentiation of authentication tag, without requiring more and more secrets

• “Not just any return address, the one right here on the stack.”

• “Not just any pointer, but one that points to type 0x15410DE0U”

What to PAC?

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

Spilled Return Address: Without PAC

foo:
 mov w8, #65
 strb w8, [x0, #16]
 strb w8, [x0, #32]
 ret
main:

 sub sp, sp, #48
stp x29, x30, [sp, #32]
add x29, sp, #32

 mov x0, sp
 bl foo
 ldp x29, x30, [sp, #32]
 mov w0, wzr
 add sp, sp, #48

 ret // x30

21

AArch64

Stack as of entry to foo()

sp+32 main’s saved RA

sp+16 pad[0] … [15]

sp+0 buf[0] … [15] a0 = &buf[0]

Spill and restore
“link register” x30

0x0000_0000_0010_CAFE

Canonical
Pointer

Canonical
Pointer

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

Spilled Return Address: With PAC

foo:
 mov w8, #65
 strb w8, [x0, #16]
 strb w8, [x0, #32]
 ret
main:
 pacia x30, sp
 sub sp, sp, #48

stp x29, x30, [sp, #32]
add x29, sp, #32

 mov x0, sp
 bl foo
 ldp x29, x30, [sp, #32]
 mov w0, wzr
 add sp, sp, #48
 autia x30, sp
 ret // x30

22

AArch64

Stack as of entry to foo()

sp+32 main’s PAC’d RA

sp+16 pad[0] … [15]

sp+0 buf[0] … [15]

0x0000_0000_0010_CAFE

a0 = &buf[0]

Spill and restore
“link register” x30

Sign link register
w/ stack pointer

Verify signature
on link register

0xE7A3_F000_0010_CAFE

PAC’d
Pointer

autia sets x30 to (say) 0xDEAD_0000_0010_CAFE.
ret faults on noncanonical value; hooray!

23

PAC “needs to get everywhere”: potentially every creation and use of a pointer! How?

Staged deployment strategy:

1. Recompile binaries with a subset of pointer signing
• Instructions are cleverly encoded as “no-op hints” on old machines

2. Make kernel changes to turn on feature for binaries requesting it
• Recompiled binaries get more secure

3. For new software targeting new CPUs, can use more pointer signing features
• Easier for some (Apple, Android) than others (Microsoft, mainstream Linux, *BSD)

PAC Deployment

PAC Summary

• Increasingly deployed in
practice, especially in Apple’s
ecosystem

• Easy to take first steps

• Generally effective in its niche

• Bypasses do still happen:
• If attacker can repeatedly try a

guess at a forged pointer, 224 is not
a lot of guesses.

• If attacker has cross-context access
to a “signing gadget”, may not
need to guess

24
Google Project Zero - Examining Pointer Authentication on the iPhone XS (2019)

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

Arm’s Memory Tagging Extension
Coloring Pointers and Memory

25

Architecture insufficiently informed:

1. Nobody told the CPU about the buf object (its extent, lifetime, type, &c)

2. When code wrote out of bounds, the store silently corrupted memory

3. That memory was holding a pointer, but CPU just thinks “bytes” PAC checked!

4. Deallocation and reuse of memory not communicated to CPU

C pointers compiled to machine words, stored as bytes in memory.

Architecture Enables Safety Violations

Allocation

Virtual
address
space

26

Address (64 bits)

6
4

-b
it

p
o

in
te

r

▪ Carve out 4 bits from each 64-bit pointer for a tag (or “color”)

▪ Bolt 4 bits next to each 16 bytes of physical memory
• (Wait, how?? Buy special memory? Is there a clever trick?)

▪ Add instructions to change tag in pointer or next to memory

▪ Require that these match on load/store operations (or else ~SIGSEGV?)

MTE Architecture

Allocation

Virtual
address
space

27

Address (60 bits*)

6
4

-b
it

 M
TE

p
o

in
te

r

Tag

Arm MTE whitepaperArm - Delivering enhanced security through Memory Tagging Extension (2021)

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhanced-security-through-mte

▪ Software (heap, compiler) can ensure that adjacent objects never the same color:

▪ Easy in malloc; some subtlety in stack handling; globals (.data) a little tricky

28

MTE for Spatial Safety

Adjacent overflow and
underflow caught

Further displacements
caught 15/16 times*

▪ Heap temporal safety: freed and (re)allocated objects’ colors changed
• Easiest to pick allocated object color (not neighbors!) at random; will most likely be a different color.

• Might reserve one color for free objects & always exclude previous color

29

MTE for Temporal Safety

UAF caught

UAR caught
(definitely,
then 14/15)

▪ Eventually, we’ll run out of colors (pigeon-hole principle) and somewhere we’ll have a collision
(UAR not caught):

▪ Neighbors could also collide colors: wouldn’t detect simultaneous UAF & OOB access:

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

Misbehaving C Program: Spatial & Referential Safety Violations

foo:
 mov w8, #65
 strb w8, [x0, #16]
 strb w8, [x0, #32]
 ret
main:
 sub sp, sp, #48

stp x29, x30, [sp, #32]
add x29, sp, #32

 mov x0, sp

 bl foo

 ldp x29, x30, [sp, #32]
 mov w0, wzr
 add sp, sp, #48
 ret // x30

30

Stores relative to
address in x0

x0 holds address
of buf on stack

AArch64

Stack as of entry to foo()

sp+32 main’s saved RA

sp+16 pad[0] … [15]

sp+0 buf[0] … [15] a0 = &buf[0]

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

Misbehaving C Program: Spatial Safety Violations, with Slideware MTE

foo:
 mov w8, #65
 strb w8, [x0, #16]
 strb w8, [x0, #32]
 ret
main:
 sub sp, sp, #48

stp x29, x30, [sp, #32]
add x29, sp, #32

 irg x0, sp
 stg x0, [x0]
 bl foo
 stg sp, [sp]
 ldp x29, x30, [sp, #32]
 mov w0, wzr
 add sp, sp, #48
 ret // x30

31

Stores
unchanged

Copy sp to x0,
insert random tag

AArch64 + MTE

x0 = &buf[0], tag 7

Set tag in memory

Stack as of entry to foo() Tag

sp+32 main’s saved RA 1

sp+16 pad[0] … [15] 1

sp+0 buf[0] … [15] 7

Put “sp” tag back

Mismatch reported here:
Tag in x0 != tag at [x0, #16]

32

MTE has three enforcement strategies, trading security for performance:

▪ Synchronous: each load and store will check tags before committing, will trap (SIGSEGV) on mismatch.

▪ Symmetric asynchronous: loads or stores commit regardless of tags, mismatches set a flag
• Kernel expected to check flag and kill process on each entry (syscall, trap, or interrupt).

▪ Asymmetric asynchronous: loads synchronous, stores asynchronous.
• Synchronous loads “easy” to do fast: data coming from cache/RAM anyway.

• Synchronous stores slow: performance needs stores to complete without loading cache line.

Intended deployment scenarios look like “accelerated debugging”:

1. At scale, in production:
a. an async mode to answer, “is there a bug?”;

b. once “yes”, switch to sync

2. Under fuzzing, in sync mode.

MTE Enforcement

33

▪ Kernel access to user memory is generally not (at present) mediated by MTE.

▪ Probabilistic arguments (“15/16”) fall if the attacker can forge tagged pointers of the right color.

▪ Opinions vary, but: MTE is not generally considered viable defense against determined attackers.

MTE Weaknesses

MTE Summary

• In shipping arm cores!

• At-scale audit & debug

• High probability of finding bugs

• High cost of synchronous mode

• Weak against directed attacks

34

Architecture insufficiently informed:

1. Nobody told the CPU about the buf object (its extent, lifetime, type, &c) MTE color extent!

2. When code wrote out of bounds, the store silently corrupted memory

3. That memory was holding a pointer, but CPU just thinks “bytes” PAC checked!

4. Deallocation and reuse of memory not communicated to CPU MTE recolored!

Things are decidedly looking better…

Architecture Enables Safety Violations

Allocation

Virtual
address
space

35

Address (64 bits)

6
4

-b
it

p
o

in
te

r

36

▪ PAC and MTE both fail if the adversary “knows” the right secrets to forge a pointer

▪ This is not an idle threat:
• MTE weakens PAC in combination: 20-bit PAC + 4-bit color

• Information disclosure vulnerabilities

• Speculative side channels

• Maybe use forging gadgets (PAC signing code, MTE memory or pointer recoloring code)

• Might have repeated ability to guess (1M guesses is not a lot)

• Sometimes we call the adversary (“library dependency”, “foreign code”, “plugin”, “JIT-ed code”)

▪ PAC and MTE show willingness to increase security by…
• getting new computers (adding metadata and new instructions to the architecture),

• changing system software, and

• recompiling.

▪ If we’re willing to do all that, can we do better than probabilistic defenses?

Probabilistic Defenses Should Be A Last Resort

CHERI Memory Capabilities
Architecture Overview

37
Chisnall et al. Beyond the PDP-11: Architectural support for a memory-safe C abstract machine. (ASPLOS 2015)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf

Architecture insufficiently informed:

1. Nobody told the CPU about the buf object (its extent, lifetime, type, &c)

2. When code wrote out of bounds, the store silently corrupted memory

3. That memory was holding a pointer, but CPU just thinks “bytes”

4. Deallocation and reuse of memory not communicated to CPU

C pointers compiled to machine words, stored as bytes in memory.

Architecture Enables Safety Violations

Allocation

Virtual
address
space

38

Address (64 bits)

6
4

-b
it

p
o

in
te

r

struct {

 uint64_t address;

 uint64_t bound_lower;

 uint64_t bound_upper;

 bool valid : 1; // kinda

} abstract_capability;

Spatially-Safe C/C++ with Memory Capabilities

Valid bit

Lower bound (64 bits)

Address (64 bits)A
b

st
ra

ct

C
ap

ab
ili

ty

39

▪ New datatype for use instead of integer pointers

▪ Still need the address (virtual or physical)

▪ Add bounds, checked on every load/store

▪ Add validity tag attesting well-formedness of capability

Upper bound (64 bits)

Allocation

Virtual
address
space

Henry M. Levy. Capability-Based Computer Systems (1984)

https://homes.cs.washington.edu/~levy/capabook

40

▪ Address arithmetic instructions, w/o changing bounds:
• CIncOffset – add signed integer displacement to address

• CGetAddr, CSetAddr – extract or inject integer address field

▪ Bounds can be narrowed but not broadened:
• CSetBounds – valid result only if new bounds are within original bounds

▪ Validity tracking: capability valid only if it comes from another pointer via approved transforms

Operations on Capabilities

Valid bit

Lower bound (64 bits)

Address (64 bits)A
b

st
ra

ct

C
ap

ab
ili

ty
Upper bound (64 bits)

What do we want the architecture to support?

Allocation

Virtual
address
space

CHERI Instruction-Set Architecture (Version 9)

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf

CHERI: Memory Capabilities (For Real This Time)

Valid bit

Metadata, compressed bounds (64 bits!)

Address (64 bits)12
9

-b
it

 C
H

ER
I

C
ap

a
b

ili
ty

41

▪ CHERI defines architectural representation of capabilities
• 2x integer pointer size (+1 bit) via bounds compression

▪ CPU instructions manipulate compressed form

▪ Every load and store instruction executed must be
 to an address in bounds of a valid capability!

• Or else the CPU traps: capability fault, like page fault

▪ Add permissions and other metadata too

Abstract datatypes are all well and good, but we’re building systems here!

struct {

 int address : 64;

 int top_mantissa_exp : 12;

 int bottom_mantissa_exp : 14;

 int bounds_denormalized : 1;

 int permissions : 16;

 int flags : 1;

 int seal : 18;

 bool valid : 1; // out of band!

} CHERI_mem_cap;

Allocation

Virtual
address
space

CHERI Instruction-Set Architecture (Version 9)

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf

42

▪ Program counter register also holds a capability!

▪ CHERI embodies a very simple (1-bit) “dynamic type” system:
• Every word is either a capability or just an integer
• Trap if integer used where a capability is required

Capabilities in Registers and Memory

Physical Memory in
Capability-sized pieces Cap valid?

Capability 1

Capability 1

Capability 1

Capability 1

Data 0

Data 0

Register Cap valid?

$4 Capability 1

$3 Capability 1

$2 Data 0

Data$1 0

load.cap $2, 0($4)

Capability 1

store.byte $1, 0($4)
Data

Data 0

load.cap $3, 0($4)

Data 0

load.word $1, 0($3)

Trap! $3 is
not valid!

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

Misbehaving C Program: Spatial & Referential Safety Violations

foo:
 mov w8, #65
 strb w8, [x0, #16]
 strb w8, [x0, #32]
 ret
main:
 sub sp, sp, #48

stp x29, x30, [sp, #32]
add x29, sp, #32

 mov x0, sp

 bl foo

 ldp x29, x30, [sp, #32]
 mov w0, wzr
 add sp, sp, #48
 ret // x30

43

Stores relative to
address in x0

x0 holds address
of buf on stack

AArch64

Stack as of entry to foo()

sp+32 main’s saved RA

sp+16 pad[0] … [15]

sp+0 buf[0] … [15] a0 = &buf[0]

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

Misbehaving C Program: Spatial & Referential Safety Violations

foo:
 mov w8, #65
 strb w8, [c0, #16]
 strb w8, [c0, #32]
 ret
main:
 sub csp, csp, #64

stp c29, c30, [csp, #32]
add c29, csp, #32

 scbnds c0, csp, #16

 bl foo

 ldp x29, x30, [sp, #32]
 mov w0, wzr
 add sp, sp, #48
 ret // c30

44

Stores relative to
capability in c0

x0 holds cap to
buf on stack

Morello

Stack as of entry to foo() V

sp+32 main’s saved RA 1

sp+16 pad[0] … [15] 0

sp+0 buf[0] … [15] 0 ca0

Program received signal SIGPROT, CHERI protection violation
Capability bounds fault
… in foo (buf=0x3fffdfff70 [rwRW,0x3fffdfff70-0x3fffdfff80] …)

gdb says:

CHERI C/C++ Programming Guide (2020)

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

45

▪ CHERI is secret-free and deterministic, in contrast to PAC and MTE.

▪ An adversary cannot forge a capability even if they know every bit of system state.
• No MTE colors, PAC secrets, ASLR slide, …

• Can’t re-inject data as pointers: no more Smashing The Stack For Fun And Profit even ignoring bounds

• Speculative execution not a threat to protection mechanism

▪ Out-of-bounds or invalid dereference always traps.

▪ Byte-level corruption or attempts to widen bounds always caught (clear tag or trap).

Secret-Free, Deterministic Mechanism

Amar et al. An Armful of CHERIs. (2022)

http://phrack.org/issues/49/14.html
https://msrc-blog.microsoft.com/2022/01/20/an_armful_of_cheris/

46

CheriABI: Spatially Safe *NIX Processes

Significant ambient authority in modern *nix-like systems: system calls!

▪ Code might mislead kernel into violating spatial safety (“confused deputy”). Consider:

 char buf[1024];

 read(fd, buf, 2048);

▪ CheriABI makes system calls take and return capabilities instead of integer addresses!

• Kernel uses passed-in capabilities to limit its own behavior.

• read(fd, buf, len) won’t write beyond buf’s capability bounds, even if len says to!

• Passes the user’s buf to BSD’s centralized copyout() facility.
▪ Facility exists to deal with page faults.

▪ Easily extended for CHERI faults; no new bounds-check instructions!

Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment. (ASPLOS 2019)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf

CHERI Heap Temporal Safety

47

48

Free Allocated

Cornucopia: CHERI Heap Temporal Safety

malloc()

free()

49

Free

AllocatedQuarantined

Cornucopia: CHERI Heap Temporal Safety

malloc()

free()

cheri_revoke()

50

So now what?

 char *p = malloc(1024); // returns capability to memory @ 0x15410DE0U

 free(p);

 char *q = malloc(1024); // definitely not 0x15410DE0U

 strcpy(p, "oh no"); // Allowed for “a while”, writes to old p

 // At some later point, “magically”, p becomes NULL

This works because CHERI tags make it easy to scan for pointers;

 pointers to free memory can be deleted.

Cornucopia Eliminates Heap Use After Reallocation

Cornucopia Reloaded: Load Barriers for CHERI Heap Temporal Safety (2024)

Cornucopia: Temporal Safety for CHERI Heaps (2020)

https://www.microsoft.com/en-us/research/publication/cornucopia-reloaded-load-barriers-cheri-heap-temporal-safety/
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf

Is New Architecture
Competing With Safe Languages?

51

Unsafe code

A two-worlds abstraction?

Safe code Function calls

Unsafe code

A two-worlds abstraction... leaks!

Safe code Function calls

Unsafe code

A safe many-worlds abstraction

Safe code

Function calls

Unsafe codeFunction calls

Unsafe codeFunction calls

Memory
safety error

Error report

Chisnall. I Don't Care About Memory Safety. (2023)
Chisnall et al. CHERI JNI: Sinking the Java security model into the C. (ASPLOS 2017)

https://www.linkedin.com/pulse/i-dont-care-memory-safety-david-chisnall/
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201704-asplos-cherijni.pdf

55

▪ CHERI is not actually a memory safety technology, it is a compartmentalization technology
• Memory safety is a necessary but not sufficient precondition

▪ Can build confined pieces of software with access to only particular resources

• Without a (transitive) capability to a given resource, no way to access it! (Even if address known!)

▪ Simplest case is a CODEC (xz, libpng, …). If all we give some CODEC code is…

• … then even a fully compromised CODEC has very limited consequence on the broader program!

▪ Entering sandbox is easy; getting back out might be tricky?

Deterministic Memory Safety Enables Compartmentalization

Resource Permissions

CODEC code (& constants) Read, Execute

Input buffer(s) Read-only

Output buffer(s) Write-only

Ephemeral stack / scratch region Read, Write

Return pointer Execute only?

CHERIoT: Complete Memory Safety for Embedded Devices (2023)

CHERIoT: Complete Memory Safety for Embedded Devices (2023) CheriOS: [...] capability operating system [...] (2021)

https://cheriot.org/papers/2023-micro-cheriot-uarch.pdf
https://cheriot.org/papers/2023-micro-cheriot-uarch.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.html

56

Sealed and Sentry Capabilities

RW RW RW

RX RXRX

Sealing
Capability

Sealed Capability
(immutable, inert)

Unsealing
Capability

PC!

Seal and Unseal
types must match

57

CHERI Is Escaping The Lab And Heading For The Village

“Morello” prototype SoC & board: 4-core, 2.5-GHz

CHERIoT (32-bit CHERI RISC-V)

Assessing the Viability of an Open-Source CHERI Desktop Software Ecosystem
SCI Semi ICENIlowRISC Sonata board

https://morello-project.org/
https://cheriot.org/
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://www.scisemi.com/products/iceni-devices/
https://lowrisc.org/news/2024/01/sonata-board-update/

58

Architectural metadata: an idea whose time has finally come?

▪ New systems to better let the CPU understand programmer intent
• PAC: “sign” pointers to convey authenticity and intent

• MTE: “color” memory to convey information about object layout and lifetime

• CHERI: replace pointers with “capabilities”, unforgeable tokens of authority

▪ Useful to debug and/or mitigate the cause of many long-standing classes of security vulnerabilities

▪ PAC has been around, MTE shipped last year, CHERI very soon through next few years!

▪ If you continue to be systems programmers, expect to see more and different kinds of metadata

Architectural Metadata for Memory Safety

59

PAC MTE CHERI

Metadata Location In-pointer In-pointer + out of band (4) In-pointer + out of band (1)

Pointer & address size Native; ~40 bits Native; ~60 bits 2x Native; Native

Pointer Integrity Yes, but cryptographic No Yes, deterministic

Adjacent overflow
No

Yes
O(n) and flat Yes, O(1) and can nest

General spatial bounds Stochastic

Heap obj. temporal safety No UAF, yes; UAR, stochastic UAF safe; UAR via sweeping

Flow control Some: context word No Some: sealing & others

Secrets? Yes  Yes  No ☺

Hardware mods required New instructions New instructions,
checks and traps,
OOB colors, caches

Wider registers, new
instructions, checks and
traps, OOB tags, caches

Software modes required Compiler (& recompile),
small kernel changes

Heap allocator, compiler (&
recompile), small kernel
changes

Compiler (& recompile),
kernel, libc, & small app
changes

Design Matrix!

60

CVEs and High Severity Bugs from (Lack of) Memory Safety

61

CVEs and High Severity Bugs from (Lack of) Memory Safety

62

CVEs and High Severity Bugs from (Lack of) Memory Safety

0

200

400

600

800

1000

1200

1400

2016 2017 2018 2019 2020

Microsoft Security Response Center Cases Number / Year
 (Memory Safety Issues)

63Amar et al. Security Analysis of CHERI ISA. (Blackhat 2021)

https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2021_08_BlackHatUSA/BHUSA21_Security_Analysis_of_CHERI_ISA.pdf

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

• Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

• E.g., Received network data cannot be interpreted as a code/data pointer – even previously leaked pointers

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization

64

Globals

Data

Heap Stack

Code

Control flow

Monotonicity Permissions
Integrity and

provenance validity
Bounds

Misbehaving C Program, Now With CHERI but Without Narrowed Bounds?

65

void foo(char *buf) {
 buf[16] = 'A';
 buf[32] = 'A';
}

int main(void) {
 char pad[16], buf[16];

 foo(buf);
 return 0;
}

0000000000001b00 <foo>:
 addi a1, zero, 65
 csb a1, 16(ca0)
 csb a1, 32(ca0)
 cret

0000000000001b10 <main>:
 cincoffset csp, csp, -48
 csc cra, 32(csp)
 cmove ca0, csp
 auipcc cra, 0
 cjalr -28(cra)
 mv a0, zero
 clc cra, 32(csp)
 cincoffset csp, csp, 48
 cret

CHERI RISC-V, w/o
csetbounds

ca0

Stack as of entry to foo() V

sp+32 main’s saved %cra

sp+16 pad[0] … [15] 0

sp+0 buf[0] … [15] 0

Whoops! Forgot
to narrow bounds.

01
Program received signal SIGPROT, CHERI protection violation
Capability tag fault caused by register cra
… in main ()

gdb says:

CHERI is…

▪ 12+ year project from the University of Cambridge’s Computer Laboratory

▪ radical, “new computer” approach: change how pointers work
• A foundational shift akin to turning on virtual memory between P1 and P3; things will be different.

▪ not so radical after all?

• CHERI composes well with modern microarchitectures

• Maybe C/C++ (and FFI) can be made safe(r)

CHERI: A New Foundation for Software Security?

66Chisnall et al. Beyond the PDP-11: Architectural support for a memory-safe C abstract machine. (ASPLOS 2015)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf

▪ CHERI enriches CPUs to have tagged capabilities with architecturally-enforced invariants
• Solves many root causes of long-standing security vulnerabilities

• Promising compartmentalization designs

• If nothing else, a good candidate for the 410 book-report!

▪ Looks quite real: FPGA RISC-V & Arm Morello SoC, LLVM, CheriBSD, Qt, KDE, …

▪ If you want to know more, please do get in touch:

• http://www.cheri-cpu.org/ for (much) more reading material, Slack, e-mail lists, &c.

• CHERI-related 412 projects!

▪ Play along at home, too; almost everything is FLOSS:
• https://github.com/CTSRD-CHERI/cheripedia/wiki/Getting-Started a how-to (from another former 410 TA!)

• https://github.com/ctsrd-cheri/cheribuild one-stop-shop build system

• https://github.com/CTSRD-CHERI/cheri-exercises hands-on introductory exercises

CHERI Summary

67

http://www.cheri-cpu.org/
https://github.com/CTSRD-CHERI/cheripedia/wiki/Getting-Started
https://github.com/ctsrd-cheri/cheribuild
https://github.com/CTSRD-CHERI/cheri-exercises

CHERI:

▪ Watson et al. Introduction to CHERI. (Tech report, 2019).

▪ Joly et al. Security analysis of CHERI ISA. (2020).

▪ Microsoft Security Response Center. What’s the smallest variety of CHERI? (2022)

▪ Chisnall et al. Beyond the PDP-11: Architectural support for a memory-safe C abstract machine.

▪ Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX
C Run-time Environment. (extended report).

▪ Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps.

▪ Joannou et al. Efficient Tagged Memory.

▪ Esswood. CheriOS: designing an untrusted single-address-space capability operating system utilising
capability hardware and a minimal hypervisor.

▪ Watson et al. Balancing Disruption and Deployability in the CHERI Instruction-Set Architecture (ISA).

▪ Capabilities Limited. Assessing the Viability of an Open Source CHERI Desktop Software Ecosystem.

▪ CHERI Instruction-Set Architecture (Version 9).

▪ Henry M. Levy. Capability-Based Computer Systems.

Book Report Fodder

68

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-932.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2017mit-cybersecurity-cheri-web.pdf
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf
https://homes.cs.washington.edu/~levy/capabook

69

CHERI Concentrate Representability

Woodruff et al. CHERI Concentrate: Practical Compressed Capabilities. (2019)

https://ieeexplore.ieee.org/document/8703061

70

CHERI Concentrate Representability

CHERI Instruction-Set Architecture (Version 9).

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf

71

CHERI Tags in Cores and Caches

L1D$

Regs

PC

CPU

L1I$

⁞

L2$

⁞

⁞

DRAM

Bigger registers
hold caps

Tag in register

Tags in data caches

Tag controller

New tag controller, L2$ splits tags & data

Reserved
RAM for
tag table

Joannou et al. Efficient Tagged Memory. (ICCD 2017)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf

CheriABI: Spatially Safe UNIX Processes
Discussion: read() and capability bounds

72

CheriABI system calls take capabilities, and

voluntarily act with implied restricted authority!

Write OK
lower=0x80922400 upper=0x80922410
Read 0x20 OK; lower[0]=0x10 upper[0]=0x20

Write OK
lower=0x3fffdfff28 upper=0x3fffdfff38
Bad read (Bad address); lower[0]=0x10 upper[0]=0x0

RISC-V Baseline CHERI-RISC-V

Kernel overwrite! Kernel return –EFAULT;

Does not write OOB

Fault detected during copy-out

read(fd, lower, sizeof(lower) + sizeof(upper))

73

Sealed and Sealing Capabilities

RW RW RW

RW

RX

RW

RX

RW

RX

Sealing
Capability

Sealed Capability
(immutable, inert)

Unsealing
Capability

PCC

IDC

Seal and Unseal
types must match

Unseal and jump
w/ equal-seal pair

RX, RW capabilities
under same seal

▪ Sealing and Explicit Unsealing:
• Sealed capabilities’ authority cannot be exercised until unsealed
• Seals come in multiple types; must have appropriate type-capability to seal and/or unseal
• Intended uses include RTTI checks and for inter-compartment references

74

Advanced Topics
Sealed and Sentry Capabilities

▪ CHERI also defines some flavors of “sentry” (“sealed entry”) capabilities which unseal in jumps:
• Single capability, becomes PCC when unsealed – useful for function entry, return addresses

• Pointer to PCC, becomes IDC when unsealed, PCC loaded from target – “pointer to intrusive vtable”

• Pointer to pair, PCC and IDC loaded – “proxy for method and instance”

RW RW RW

RW

X

PCC

IDC RW

X

RW

▪ Can unseal by CInvoke: sealed code and data caps of equal type; code becomes PCC, data IDC:

CheriBSD Code Changes

Notes:

▪ Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files

▪ Kernel includes changes to be a hybrid program and most changes to be a pure-capability program

• Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello

• Count includes partial support for 32 and 64-bit FreeBSD and Linux binaries.

• 67 files and 25k LoC added to core in addition to modifications

• Most generated code excluded, some existing code could likely be generated

Area Files total Files modified %
files

LoC
total

LoC
changed

%
LoC

Kernel 11,861 896 7.6 6,095k 6,961 0.18

• Core 7,867 705 9.0 3,195k 5,787 0.18

• Drivers 3,994 191 4.8 2,900k 1,174 0.04

Userspace 16,968 649 3.8 5,393k 2,149 0.04

• Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48

• libc++ 227 17 7.5 114k 133 0.12

• Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02

75

Clang/LLVM/LLD Code Changes

Notes:

▪ Changes predominantly (u)intptr_t vs size_t/ptrdiff_t confusion, static_asserts about struct
sizes/layouts no longer true with 128-bit pointers, and a few instances of using uint64_t for pointers

▪ Able to compile and link a pure-capability C hello world natively on CHERI-RISC-V

▪ (*) One outstanding known issue in the frontend prevents compiling a C++ hello world

• Implementation and header files in question only total an additional 193 lines, or 0.021%, as a worst-case
upper bound

▪ Just over half the Clang changes (99 LoC) are for its bytecode-based C++ constexpr interpreter

Area Files
total

Files
modified

%
Files

LoC
total

LoC
changed

%
LoC

LLVM 4220 44 1.0 1656k 217 0.013

Clang* 1593 30 1.9 911k 190 0.021

LLD 249 5 2.0 67.8k 30 0.044

Total 6062 79 1.3 2365k 432 0.018

76

WebKit - JSC Code Changes

Notes:

▪ JSC-C is a port of the C-language JavaScriptCore interpreter backend

▪ JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler

▪ Runs SunSpider JavaScript benchmarks to completion

▪ Language runtimes represent worst-case in compatibility for CHERI

• Porting assembly interpreter and JIT compiler requires targeting new encodings

▪ Changes reported here did not target diff minimization

• Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for
performance and security evaluation

• Some changes may not be required with modern CHERI compiler

Area Files
total

Files
modified

%
Files

LoC
total

LoC
changed

%
LoC

JSC-C 3368 148 4.4 550k 2217 0.40

JSC-JIT 3368 339 10.1 550k 7581 1.38

77

Heap Allocator & Spatial Safety (Montonicity)

Capability (allocator-owned)

Shared Heap

Allocator (TCB)

Client (untrusted)

Capability (allocated object)

Capability (subobject)

Derive for client

Narrow bounds

78

79

Advanced Topics
CheriABI (2/2)

R
W

X
to

 a
ll

u
se

r-
sp

ac
e

RX

RW

R

RW

.text .rodata .data stack

exec()

U
se

r-
sp

ac
e

A
d

d
re

ss
es

C

RW

crt/rtld

heap

mmap()

g_foo

RW CRW

malloc()

RW

code

CheriABI
CHERI Memory Capabilities Meet *NIX

80

81

▪ CHERI capabilities used for both
• Language-level pointers visible in source program
• Implementation pointers implicit in source

▪ Compiler generates code to
• bound address-taken stack allocs & sub-objects
• build caps for vararg arrays

▪ Loader builds capabilities to globals, PLT, GOT
• Derived from kernel-provided roots
• Bounds applied during reloc processing

▪ Small changes to C semantics!
• intptr_t, vaddr_t
• memmove() preserves tags

• Pointers have single provenance
• Integer pointer casts require some care

Compiling C to CHERI

Language-level memory safety

Pointers to heap
allocations

Pointers to stack
allocations

Pointers to
global variables

Pointers to TLS
variables

Function
pointers Pointers to

memory mappings

Pointers to sub-
objects

Sub-language memory safety

GOT
pointersReturn

addresses

PLT entry
pointers

ELF aux arg
pointers

Stack
pointers

C++ v-table
pointers

Vararg array
pointers

See CHERI C/C++ Programming Guide.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

82

CheriABI: Spatially Safe *NIX Processes

▪ Capabilities now implement all pointers in a process

▪ More faithfully captures program intent as “objects with links between them”

Davis et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment. (ASPLOS 2019)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf

83

Morello: An experimental ARMv8 with CHERI

“Morello” prototype SoC & board: 4-core, 2.5-GHz Armv8.2-A w/ CHERI extensions

84

CHERI Ecosystem At A Glance

QEMUExecutable
ISA spec

QEMUExecutable
ISA spec

“FVP” SoCSeveral FPGA cores

Implementations

RISC-V Morello (ARMv8.2)

Kernels (VM, swap,

exec, mmap, …)
FreeBSD (“CheriBSD”) Linux (early work) FreeRTOS CheriOS

FreeBSD libc, libc++ musl, glibc (others)C runtime (malloc,

varargs, TLS, ld.so, …)

CheriBSD userspace PostgreSQL QTWebKit

KDE

nginxApacheUserspace

85

KDE on CHERI-RISC-V over VNC

Cornucopia: CHERI Heap Temporal Safety
Quarantine & Batched Revocation

86

Kernel

Stack

Heap

Shadow

• Kernel offers revocation service to user programs
• Exposes revocation bitmap, encodes live/free state of memory.

• On free, allocator…
• holds address space in quarantine

• marks corresponding bits of object

• When quarantine fills, allocator invokes revoker service
• Deletes all capabilities whose targets have marked revocation bits

• After revocation, safe to reuse address space
• Allocator clears shadow, enqueues address space to free lists

Globals

Thread registers

Address Space

Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf

87

Isn’t checking every capability in the address space horrifically expensive?

▪ “Cornucopia Reloaded”, SPEC CPU2006 INT, revoke target <33% heap in quarantine, wall-clock
overheads on Morello: <10% geomean, <30% worst case!

▪ Key insight: CHERI validity bits precisely identify all potential references to memory.

• Don’t have to guess, and we are justified in erasing pointers to quarantine.

Sweeping Revocation Performance

Cornucopia Reloaded: Load Barriers for CHERI Heap Temporal Safety (2024)

https://www.microsoft.com/en-us/research/publication/cornucopia-reloaded-load-barriers-cheri-heap-temporal-safety/

88

▪ Focused on heap temporal safety
• More complex lifetimes than stack objects, resists static approaches

▪ Heap pointers end up in globals, stacks, registers, kernel heap, …

▪ Risk: retain references to free() object, overlap new allocation

▪ Eliminate “use-after-reallocation” by revoking dead references
• UAF still possible, but accesses old object

▪ Hold address space in quarantine to amortize sweep cost
• Quarantine state held out of band

▪ “Dual” of garbage collection: (lazily) enforce free()

Cornucopia: Heap Temporal Safety Atop CHERI
Address Space Quarantine, Revocation

Kernel

Stack

Globals

Heap

Address Space

Thread registers

Sweeping Revocation Implementation

“Is this quarantined?” bitmap

Cache lines w/o tags: skip

Load cap, get base address

Load bitmap bit, CAS NULL if set

…

4K page being swept

…

89

90

CHERI Tags identify capabilities

• Don’t have to guess; revoker justified in erasing!

Capability-Dirty PTE Flags

• Set by PTW; skip sweep of pages w/o capabilities

Capability-Load Trap PTE Flags

• Cause CPU to trap; revoker scans (WIP)

Architectural Acceleration for Revocation

Filardo et al. Cornucopia: Temporal Safety for CHERI Heaps. (Oakland 2020)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf

Cap-
dirtyable

Cap-
clean

Cap-
dirty

Cornucopia Architecture
Per-Page “Capability-Dirty” Tracking

Capability store to page; trap

91

92

Cornucopia Architecture
Per-Page Capability Load Generations

TTBR PD PT Phys mem

0

1

0

0

1

1-bit generation counter in core

… and in each PTE

Trap: tag set, gen ≠

No trap: tag clear

No trap: tag set, gen =

Loads trap if (loaded CHERI tag set) and (core gen ≠ source page PTE gen)

93

Cornucopia Architecture
Revoking With Capability Load Generations

0

1

0

0

1

0

01

1

1

1

1

Revocation begins by stepping
global load generation on all cores

As loads cause traps, sweep per page
and update PTE generation

Background scan visits all pages w/ caps,
updates PTE generation

1

TTBR PD PT Phys mem

94

MMU-based isolation & selective sharing

▪ Programs in separate address spaces

▪ IPC by context switch

• Data copy by kernel (write/read on pipe)
▪ Both time and space costs!

• TLB switching also costs!
▪ Flush (time, power) or ASIDs (area, power)

▪ Selectively shared pages
• Pointers to shared memory: fine

• Pointers in shared memory: … carefully

• Pointers from shared memory: WTF‽

Research: Colocation: Multiple Processes In One Address Space!
P

ro
ce

ss
 1

Pr
o

ce
ss

 2

‽

95

▪ Colocated Processes
• Many programs in one address space

• Isolation maintained with CHERI

▪ IPC by function call (eliding some details)
• Can copy on call through “trusted switcher”

▪ Really fast sharing: pass capability across IPC
• No misinterpretation risk from shared pointers

Research: Colocation: Multiple Processes In One Address Space
P

ro
ce

ss
 1

Pr
o

ce
ss

 2

96

Clearly some costs to the story.

▪ Processor pipeline complexity, new cache “stuff”
• Still RISC; not X86 levels of complexity.

▪ Space overheads: tag memory overheads (1/128th of DRAM space)

• You probably won’t notice the 1% change

▪ Pointers double in size! Do we need all computers to have 2x as much DRAM??
• Data still just data! Cute cat videos still mostly just (adorable) bytes.

• Workload dependent. May be able to relax the truly expensive, pointer-heavy cases in interesting ways.

▪ Fit half as many pointers in each cache line?! Double cache sizes? Line sizes? Bus frequencies?
• Not double, but certainly increase some thing(s) for workloads that need it.

Performance Overhead?

97

▪ As of ASPLOS’19, on CHERI-MIPS CPU in FPGA:
• 0 - ~10% cycle overheads (= wall clock, here) in most cases

• Many L2 cache misses for pointer-heavy workloads from increased pointer size

▪ Detailed report on Morello performance also available; ample nuance in big, prototype chip!
“1.8% to 3.0% is our current best estimate of the [geomean] overhead … for a future optimized design”

Performance Overhead Measurements

se
cu

rit
y-

sh
a

of
fic

e-
st

rin
gs

ea
rc

h

au
to

-q
so

rt

au
to

-b
as

ic
m

at
h

ne
tw

or
k-

di
jk

st
ra

ne
tw

or
k-

pa
tr
ic
ia

te
lc
o-

ad
pc

m
-e

nc

te
lc
o-

ad
pc

m
-d

ec

sp
ec

20
06

-g
ob

m
k

sp
ec

20
06

-li
bq

ua
nt

um

sp
ec

20
06

-a
st

ar

sp
ec

20
06

-x
al
an

cb
m

k

in
itd

b-
dy

na
m

ic

-10
+ 0

+ 10
+ 20
+ 30
+ 40
+ 50
+ 60
+ 70
+ 80 instruct ions cycles l2cache misses

https://ctsrd-cheri.github.io/morello-early-performance-results/

CHERI Source Compatibility

Codebase kind LoC Changes for CHERI

CheriBSD Kernel 0.2%

Low-level runtime libraries < 0.5%

JSC JIT 1-2%

QT, KDE libraries < 0.1%

CLI applications, libraries ≈ 0.02%

QT, KDE applications < 0.05%

98

DSbD Consortium Update. (2021/05)

Capabilities Limited. Assessing the Viability of an Open Source CHERI Desktop Software Ecosystem. (2021)

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20210507-dsbd-cheri-morello.pdf
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

99

CHERI scales down to microprocessor environments

▪ 32-bit addresses, so 64-bit capabilities

▪ Designed for compartmentalized software: mutually distrusting components, secure communications
• RTOS more “microkernel” than “kernel”, only essentially trusted component after boot is ~400 instructions.

▪ Takes advantage of small memories:
• Special permissions for stack capabilities, stack zeroed on cross-compartment call

• Heap temporal safety baked into the architecture

▪ Fully open-source research project originally from Microsoft (now https://www.cheriot.org)
• Formal spec, compiler, emulator, Verilog implementation, RTOS, compartmentalized JS interpreter, …

• Tape out perhaps as early as next year(!)

CHERIoT: Scaling CHERI Down to 32-bit Microcontrollers

https://www.cheriot.org/

Heap Allocator Use Case

100

Capability (allocator-owned)

Shared HeapCapability color

Memory granule color

Allocator (TCB)

Client (untrusted)

Capability (allocated object)

Capability (allocated object)

Capability (freed object)

Recolor-on-
free to close
UAF window

CHERI makes
same-color

neighbors OK

101

Future work: CHERI+MTE Heap Temporal Safety

Quarantined

Free

AllocatedRecolour
last colour

malloc

free

reuse

revoke

102

• Spatial and temporal errors lead to arbitrary code execution

C/C++ on old computers

• Spatial errors fail-stop (and maybe heap temporal errors, too!)

C/C++ on new computers

• Array index errors throw exceptions; other spatial errors impossible*

• Temporal errors impossible*

Ada / Java / C# / TypeScript / ML / Haskell / Rust / …

Safe Languages?

103

▪ There’s a lot of C, some of it very expensive to have made, and some of it very fast.

▪ TCB code is intrinsically unsafe (sit below safe language abstraction)
• Memory managers, garbage collector, context switcher, …

▪ Different safe language runtimes likely view each other as unsafe!

▪ Rewrite parts of programs?

Rewrite Everything to be Safe?

104

▪ Recently, Rust community has been fretting about semantics of unsafe Rust.
• Compiler transformations threatening correctness

▪ Recent proposal to use CHERI-like “strict provenance” semantics!
• No integer-to-pointer casts, trivially “NPVI” semantics

• Distinguish usize from uaddr from uptr?

• Integers must be recombined with pointers: address from integer but provenance from pointer

▪ Unsafe strict provenance Rust code should be less unsafe on CHERI!

CHERI + (Unsafe) Rust

Aria Beingessner. Rust's Unsafe Pointer Types Need An Overhaul. (2022) Tracking Issue for strict_provenance on GitHub

https://doc.rust-lang.org/nightly/std/ptr/index.html
https://gankra.github.io/blah/fix-rust-pointers/
https://github.com/rust-lang/rust/issues/95228

	Default Section
	Slide 1: Architectural Metadata for Memory Safety

	Preliminaries
	Slide 2: Who am I?
	Slide 3: Outline
	Slide 4: Learning Goals

	Motivation
	Slide 5: Modern Computer Architecture: Unsafe at Any Speed?
	Slide 6: CVEs and High Severity Bugs from (Lack of) Memory Safety
	Slide 7: CVEs and High Severity Bugs from (Lack of) Memory Safety

	Motivating Example
	Slide 8: Modern Architecture Unsafety
	Slide 9: Misbehaving C Program: Spatial & Referential Safety Violations
	Slide 10: Temporal Safety
	Slide 11: Architecture Enables Safety Violations

	Safe Languages
	Slide 12: OK, But That’s Just C!
	Slide 13: What About All The Stuff We Can’t Rewrite?
	Slide 14: What Have We Tried Doing?
	Slide 15: What Now?

	PAC
	Slide 16: Arm’s Pointer Authentication
	Slide 17: Recall: Architecture Enables Safety Violations
	Slide 18: Architecture Enables Safety Violations
	Slide 19: PAC-ing Extra Bits
	Slide 20: What to PAC?
	Slide 21: Spilled Return Address: Without PAC
	Slide 22: Spilled Return Address: With PAC
	Slide 23: PAC Deployment
	Slide 24: PAC Summary

	MTE
	Slide 25: Arm’s Memory Tagging Extension
	Slide 26: Architecture Enables Safety Violations
	Slide 27: MTE Architecture
	Slide 28: MTE for Spatial Safety
	Slide 29: MTE for Temporal Safety
	Slide 30: Misbehaving C Program: Spatial & Referential Safety Violations
	Slide 31: Misbehaving C Program: Spatial Safety Violations, with Slideware MTE
	Slide 32: MTE Enforcement
	Slide 33: MTE Weaknesses
	Slide 34: MTE Summary

	CHERI Stage Setting
	Slide 35: Architecture Enables Safety Violations
	Slide 36: Probabilistic Defenses Should Be A Last Resort

	CHERI
	Slide 37: CHERI Memory Capabilities
	Slide 38: Architecture Enables Safety Violations
	Slide 39: Spatially-Safe C/C++ with Memory Capabilities
	Slide 40: Operations on Capabilities
	Slide 41: CHERI: Memory Capabilities (For Real This Time)
	Slide 42: Capabilities in Registers and Memory
	Slide 43: Misbehaving C Program: Spatial & Referential Safety Violations
	Slide 44: Misbehaving C Program: Spatial & Referential Safety Violations
	Slide 45: Secret-Free, Deterministic Mechanism
	Slide 46: CheriABI: Spatially Safe *NIX Processes
	Slide 47: CHERI Heap Temporal Safety
	Slide 48: Cornucopia: CHERI Heap Temporal Safety
	Slide 49: Cornucopia: CHERI Heap Temporal Safety
	Slide 50: Cornucopia Eliminates Heap Use After Reallocation
	Slide 51: Is New Architecture Competing With Safe Languages?
	Slide 52: A two-worlds abstraction?
	Slide 53: A two-worlds abstraction... leaks!
	Slide 54: A safe many-worlds abstraction
	Slide 55: Deterministic Memory Safety Enables Compartmentalization
	Slide 56: Sealed and Sentry Capabilities
	Slide 57: CHERI Is Escaping The Lab And Heading For The Village

	Conclusion
	Slide 58: Architectural Metadata for Memory Safety
	Slide 59: Design Matrix!
	Slide 60

	Backup Slides: Intro
	Slide 61: CVEs and High Severity Bugs from (Lack of) Memory Safety
	Slide 62: CVEs and High Severity Bugs from (Lack of) Memory Safety
	Slide 63: CVEs and High Severity Bugs from (Lack of) Memory Safety
	Slide 64: CHERI enforces protection semantics for pointers
	Slide 65: Misbehaving C Program, Now With CHERI but Without Narrowed Bounds?

	CHERI Executive Summary
	Slide 66: CHERI: A New Foundation for Software Security?
	Slide 67: CHERI Summary
	Slide 68: Book Report Fodder

	Backup Slides: CHERI Details
	Slide 69: CHERI Concentrate Representability
	Slide 70: CHERI Concentrate Representability
	Slide 71: CHERI Tags in Cores and Caches
	Slide 72: CheriABI: Spatially Safe UNIX Processes Discussion: read() and capability bounds
	Slide 73: Sealed and Sealing Capabilities
	Slide 74: Advanced Topics Sealed and Sentry Capabilities
	Slide 75: CheriBSD Code Changes
	Slide 76: Clang/LLVM/LLD Code Changes
	Slide 77: WebKit - JSC Code Changes
	Slide 78: Heap Allocator & Spatial Safety (Montonicity)
	Slide 79: Advanced Topics CheriABI (2/2)

	CheriABI
	Slide 80: CheriABI
	Slide 81: Compiling C to CHERI
	Slide 82: CheriABI: Spatially Safe *NIX Processes

	CHERI Status
	Slide 83: Morello: An experimental ARMv8 with CHERI
	Slide 84: CHERI Ecosystem At A Glance
	Slide 85: KDE on CHERI-RISC-V over VNC

	CHERI Heap Temporal Safety
	Slide 86: Cornucopia: CHERI Heap Temporal Safety Quarantine & Batched Revocation
	Slide 87: Sweeping Revocation Performance

	Backup Slides: CHERI Temporal Safety
	Slide 88: Cornucopia: Heap Temporal Safety Atop CHERI Address Space Quarantine, Revocation
	Slide 89: Sweeping Revocation Implementation
	Slide 90: Architectural Acceleration for Revocation
	Slide 91: Cornucopia Architecture Per-Page “Capability-Dirty” Tracking
	Slide 92: Cornucopia Architecture Per-Page Capability Load Generations
	Slide 93: Cornucopia Architecture Revoking With Capability Load Generations

	Advanced Topics
	Slide 94: Research: Colocation: Multiple Processes In One Address Space!
	Slide 95: Research: Colocation: Multiple Processes In One Address Space
	Slide 96: Performance Overhead?
	Slide 97: Performance Overhead Measurements
	Slide 98: CHERI Source Compatibility

	CHERIoT
	Slide 99: CHERIoT: Scaling CHERI Down to 32-bit Microcontrollers

	CHERI+MTE
	Slide 100: Heap Allocator Use Case
	Slide 101: Future work: CHERI+MTE Heap Temporal Safety

	vs Rust
	Slide 102: Safe Languages?
	Slide 103: Rewrite Everything to be Safe?
	Slide 104: CHERI + (Unsafe) Rust

