MEMORANDUM

To: IMP Guys

From: J. McQuillan

Subject: Software Checksum on All IMP/IMP Transmissions
Date: 12 March 1973

IG #15

During the last few weeks of intensiflied work on the problem of
network reliability, it has become increasingly apparent that

the present network programs are lacking in two fundamental areas:
fault tolerance and diagnosis. The IMP can be made more reliable
and also more useful in fault isolation, but a large effort is
required. As an important first step, I investigated the technique
of generating and verifying a checksum on all IMP transmissions,

in software. I have devised an implementation which is attractive
enough to merit inclusion in the IMP on a long-~term basis.

1. Checksum on all IMP-to-IMP Transmissions

The recently discovered data erroré in the network (see IMP Guys
Note #14) make it imperative to check the modem interfaces, the
DMCs, and the memories in the IMPs. The key problem with includ-
ing a checksum calculation and verification in the store-and-
forward loop of the IMP is speed. That loop 1s designed to be as
fast as possible, and checksums take a long time to generate. The
processing bandwidth of the IMP for store-and-forward traffic can
be computed as follows:

« the program time for Modem Input, TASK, and Modem
output = 550 cycles

« the I/0 time for a packet = 8 cycles/word for 516,
4 cycles/word for 316

MEMORANDUM ' 1G #15
Software Checksum on All IMP/IMP Transmission

12 March 1973

page 2

These figures are for sending a packet from one IMP, recelving
it at the IMP, and processing it (including acknowledge overhead
which is piggybacked). A full length packet is about 1000 data
bits and takes 67 words for the I/0 transfers. Thus, it takes
the 516 about 1 ms to process 1000 bits, for a bandwidth of 1
megablt per second, and the 316 has a bandwidth of about 750 Kbs.
In other words, the 516 IMP can handle twenty (20) 50 Kbs lines
full duplex, in terms of processing time.

" The fastest way to add a table of numbers in a loop on the 516
or 316 is to use the index register as a counter and add indirect
through a post-indexed pointer: |

ADD PNTR I
IRS @
JvMp .-2

where PNTR is TABLE + TABLELENGTH X and the X starts at -(TABLE-
LENGTH) and is incremented to zero. This loop takes 7 cycles per
word. Including it on the IMP store-and-forward loop adds 14
cycles per word, cutting processor bandwidth by half on the 516
and by even more on the 316.

An alternative 1s to code the add loop on a straight line. The
number of words in a packet, including header is 67, and an add
chain determines the length of the packet, sets up the index
register to point to the packet, and jumps into the sequence

at the appropriate place, adding the last word of the packet
first, and ending with the first word:

MEMORANDUM IG #15
Software Checksum on All IMP/IMP Transmissions
12 March 1973

page 3
ADD 67 X
ADD 66 X
ADD 1 X
ADD £
JMP RETURN

This technique costs only 2 cycles per word, since pre-indexing
is free on the X16. Note that this is nearly as fast as special-
purpose hardware can run!

One drawback to this approach is that the code takes a lot of
memory, about a buffer's worth. Both Modem Input and Modem Output
need to perform checksums. Two ways to permit this are to provide
separate code for each program, which is expensive in storage, or
to have each program lock the others out, which is slow. It turns
out to be very easy to escape this dilemma by making the add

chain reentrant, so that any number of interrupt programs can use
it without locking each other out. The state of any process using
the add chain is given by the three registers (program counter,
accumulator, index reglster) which are saved and restored by each
process, and by the identity of the owner of the add chain., Thus,
the end of the chain can be JMP RETURN 1, and each process can set
up RETURN for itself, saving the current lower priority owner it
interrupted, and then restore RETURN when it is finished. Then
arbitrarily many levels of interrupts can share the same add chailn
without locking each other out.

MEMORANDUM IG #15
Software Checksum on All IMP/IMP Transmlsslons

12 March 1973 .

page U

It is possible, then, to provide a software checksum on the IMP
store-and-forward path for a reasonable cost 1n speed and storage.
The output program adds on a software-generated checksum at the
end of each packet, which includes every header and data word,
just before issuing the output instruction. Likewlse, the

input routine verifies the checksum on each packet before it
begins to examine the header. This checks the two modem inter-
faces and DMC transfers. It also checks the memory of the sending
IMP. (A way to check the memory of the receiving IMP is discussed
below.) This approééh costs 4 cycles per word, which reduces the
store-~and-forward processing bandwidth of the 516 IMP to 750 Kbs
and that of the 316 IMP to 600 Kbs, or 15 and 12 fifty (50) Kbs
lines respectively.

I am releasing a new version of the IMP program tomorrow, March 13,
which includes a software checksum on all IMP/IMP transmissions.
The change to the program cost only two buffers of storage.

2. Implementation Considerations

There are several advantages arising from the simple, straight-line
code approach to checksum calculation. First, the code is read-
only or pure and can be located on page 1, the protected page of
516 IMP memory. This saves a buffer of storage, since it does not
take away from the buffer pool (page 1 cannot be used for buffers).
Second, it provides an extra measure of reliability for this
extremely important code. If a machine has the memory protect
option, the code should never get changed. But even machines
without memory protect can check to see if this code 1is correct.

It is simple enough so that it could even be regenerated by the

MEMORANDUM ' IG #15
Software Checksum on All IMP/IMP Transmissions

12 March 1973

page 5

program! Thils may sound extreme, but if the add chain code
fails, no messages can get in or out of the system, SO pre-
cautions are worthwhile.

One issue to be railsed is the queStion of how good this software
checksum is. I have implemented a simple "sum of all words minus
the length" checksum. The checksum equals the twos complement

of [the sum of all words 1in the packet - number of words in the

" packet], and it 1is the last word in the packet. Thus, adding

all the words in the packet, including the checksum, then subtracting
the packet length (not including the_checksum) should give zero.

If a packet has errors which are all picked bits or all dropped
bits, it will be detected as in error. Picked bits and dropped
pits in the same packet will be detected if they do not occur in
the same bit position, or otherwise cancel out. Missing words

or words of zero are caught by including the length in the checksum.
On balance, this checksum is probably good enough for now. We
cannot get too much fancier in software. We could never replace
the cyclic checksum in the modem interface, for instance. However,
we might want to change the code to do an add and shift sequence
which is a lot better but twlce as slow.

The question now arises as to what we should do with a packet with
a bad checksum. I think that we want to begin to expand the role
of the NCC in fault isolation and diagnosis. The NCC machine
could, with more c re and an additional output devise, log all
occurrences of trouble on the network. This is conceptually an
expansion of the trap messages from three numbers to a message

of arbitrary length. Accordingly, I have built a new statistics

MEMORANDUM IG #15
Software Checksum on All IMP/IMP Transmissions

12 March 1973

page 6

program into the IMP, called DIAG, whose function is to send
reports of malfunctions to a specified destination. At first,
these will simply be a copy of a packet with a bad checksum,

a spurious ack, or the like, along with the program counter,
accumulator and index register which identify the error condition.
The packet location in memory will also be included. This
statistics program will be independent of NCC trouble reports.

It uses the slot of the now-defunct arrival statistics. That is,

Parameter 4 = DIAG on/off

DIAG link

DIAG destination
DIAG frequency

Parameter 13

Parameter 21

Parameter 27

Currently, the DIAG destination is set to be the TTY on the Tinker
IMP which is located in the IMP room. The DIAG on/off flag is
used by the program as the queue of packets to send, so DIAG is
turned on when an error is detected, and turned off when all
errors have been reported. The frequency is kept at zero,

meaning DIAG is runnable whenever it 1s turned on, with no timed
latency.

Another set of issues concers the release of the IMP program which
generates and expects checksums into a network of IMPs running a
program which does not. There are three differences in the two
systems. The new system has a packet length one larger to include
the checksum. It generates a checksum for each outgoing packet.
And it verifies the checksum on each incoming packet. Therefore,

the release should have the followlng three phases:

MEMORANDUM | IG #15
Software Checksum on All IMP/IMP Transmisslons

12 March 1973

page 7

(1) The new system is propagated everywhere with:

bigger packet buffers
+ checksum generation disabled

« checksum checking disabled except for packets
marked as "checksummed" with a special bit in
the header (currently unused). These packets
will be checked, and, if validated, the data
end poihter, BUFE, will be decremented.

« all output packets marked as unchecksummed

(2) After the new system is running everywhere, change
each IMP in turn to have: ’

+ checksum generation enabled, with output packets
marked as checksummed

(3) Finally, when all systems are generating checksums:
+ checksum checking enabled unconditionally

The last step prevents the "checksummed" bit from serving as a
one-bit checksum and admitting bad packets. Thus, the "check-
summed" bit is only a temporary measure to facilitate the release.
There is one complication: core reload requests. These messages
can easlly have the correct checksum assembled in, but the IMPLOD
paper tapes in the field do not have a checksum for this message.

MEMORANDUM IG #15
Software Checksum on All IMP/IMP Transmissions

12 March 1973

page 8

Therefore, steps (1) and (2) will happen on the Tuesday, March 13
release, and step (3) can happen (and the "checksummed" bit can
go away) after new IMPLOD paper tapes are distributed to all
sites. In the meantime, the program will check to see that an
unchecksummed message is a reload request. If not, 1t will treat
it as a checksum error and give the packet to DIAG. Therefore,
it is actually this fast check which 1is enabled as a kind of
temporary step 2.5.

3. Extensions to the IMP-to-IMP Checksum

After we have a software checksum on all IMP-to-IMP transmissions,
it is natural to ask if we can get more. Consider the case of
3 IMPs:

A B C

When A generates the checksum and sends the packet to B, B is

able to verify that the packet did not change while being re-
written into core after being read to calculate the checksum. It
also verifies that the DMC read the same thing ouft, and that the
interfaces did not change it at either end. It arrived in the
memory of B exactly the same as it left the memory of A. Likewise,
we can be certain that it will arrive 1in the memory of C just as 1t
left the memory of B. But what about from the time it arrives in
B to the time when it leaves B? It may change during the core
re-write as the checksum is checked on input, it may be fetched
incorrectly for checksum generation on out, or may be changed in
between by almost anything. Clearly, one should check the output
checksum on leaving B against the checksum that the packet carried

MEMORANDUM IG #15
Software Checksum on All IMP/IMP Transmissions

12 March 1973 «

page 9

on input. The only change made to the packet in the store-and-
forward loop is to the acknowledge header, and therefore the
change to this word can be compared to the change in the check~-
sum. If they do not agree, a data error occurred while the
packet was resident in the memory of B. Note that this extra
calculation costs very little in speed or space, since the
checksum must be generated afresh anyway.

At this point, it is only a single step to an end-to-end packet
checksum. If one stipulates that the Host Input routine in the
IMP generate a checksum for each packet it gives to TASK, and
that the Host Output routine verify the checksum on each packet
it sends to the Host, then we have an end-to-end checksum on packets.
It has no time "gaps", or times when the data is not checked. It
uses only 16 bits per 1000 bit packet. And it only costs i cycles
per word per hop on the network path, 2 cycles on input, and 2

on output. Note also that it does not cost any extra code, since
the add chain which performs the checksum 1is reentrant, and
different interrupt levels may share it.

Clearly, we should look hard at this scheme with regard to the
HSMIMP hardware design effort. It is not certain that the 516s

and 316s in the network could ever be fitted with hardware to do

a checksum job a great deal more efficiently than this software
approach. It 1s certain that the 516s and 316s could never perform
a fancy cyclic checksum in software to imitate some HSMIMP hardware.
Perhaps a compromise can be reached.

MEMORANDUM ‘ IF #15
Software Checksum on All IMP/IMP Transmissions

12 March 1973

page 10

In summary, the checksum scheme presented here answers both of

the needs described at the beginning of this note. The IMPs

are much more reliable and fault-tolerant, since all IMP-to-IMP and
source-to-destination transmission are checked. Moreover, the
IMP-to-IMP checking dovetails with the end-to-end checking so

there are no time gaps in the path. Therefore, since every packet
is checked both when it enters an IMP and when it leaves, the

- IMPs provide a maximum of diagnostic information. We have both an
end-to-end checksum on packets and a means for determining exactly

where fatilures occur.

JMCQ/nlg

