
1

A Partial Specification of an International Transmission Protocol

TO: E. Aupperle, R. Kahn, A. McKenzie, R. Metcalfe, R. Scantlebury,

D. Walden, and H. Zimmerman

FROM: V. Cerf

SUBJECT: First pass draft of International Transmission Protocol

Please feel free to make comments, revisions, additions, and deletions from the corpus. I

have tried to faithfully record my understanding of the protocol. From time to time, I have
departed from the proposed terminology, but I believe I have done this only where it seems
appropriate.

Your early response is critical. The next meeting is most likely to be scheduled for

September 16 in Sussex, just after the NATO Advanced Institute, and this protocol will be a
major topic for discussion.

Send replies to me at:

ERL 407

Stanford University

Stanford, California 94305

U. S. A.

Respectfully,

Vint Cerf

2

TERMS OF REFERENCE

Connexion

It is imagined that between pairs of HOST computers, a single logical connexion is
established upon which is multiplexed all communications between these two HOSTs. A
connexion is a full-duplex channel, but it will be convenient to think of it as a pair of simplex,

one-directional channels, each with a source and a destination.

Element

An element is a fixed length string of bits out of which messages (see below) of a
communication between HOSTs are built. The size of an element is 8 bits by default unless it is
changed explicitly by the sender.

Gateway

A gateway is the interface between networks. It may, in fact, not be a real entity (e.g.,
computer), but may merely be realized in software which lies on either side of a physical
(optical, electromagnetic, acoustic, etc.) connection between the packet switches (or nodes) of

two distinct networks.

HOST

A HOST is typically a computer which is attached to one or more packet switches (or nodes)
in a constituent network. The HOST is a source and destination for messages. It may be the case
that the HOST is coexistent with a packet switch (e.g. the TIP in the ARPA network), or that it is
in fact a terminal (e.g. RCP). In the sequel, it will be necessary to assume that a terminal cannot

be a HOST unless it is capable of performing according to the specified protocol, and
furthermore, the name (identification) of the terminal must be known to the packet switching
subnet in the same way a serving HOST’s identification is known. Note that a HOST may be

connected to more than one packet switch (in different networks or the same network).

Message

A message is a well defined, formatted string of bits which has the property that it can be

inserted into a constituent network at one packet switch where it will leave the network in the
same form it entered. If the message is broken up into packets by the network this is invisible
and the packets are reassembled before they leave the network. In the ARPA network, a message

is at most about 8095 bits long. In the NPL network, this length is more like 257 bytes, and in

3

RCP it is 64 bytes. Thus, a message is the largest bit string which can be entered into the network

and retrieved from it without apparent change, breakage, etc. For some networks, messages and
packets (see below) are identical, except possibly for some control information which is tacked
onto the message while it is in transit through the net.

Node

A node is the elemental unit of a packet switching system. The term node and packet switch
are used interchangeably in this paper, but a node might also be construed to be an addressable
entity which participates in the movement of packets within the network. This permits us to

consider loop systems in which a node forwards but does not store packets which pass through it,
on line switched systems.

Packet Switch

A packet switch is a computer which stores and forwards packets to achieve communication
between HOSTS in a packet switching network. For purposes of this discussion, a gateway may
be looked upon as a HOST by a packet switch.

Transmission Control Program (TCP)

A program in a HOST computer which realizes the International Transmission protocol
enabling a collection of messages from processes and terminals associated with one HOST to be
multiplexed along a connexion to another HOST in the same or foreign network. The TCP does

not address itself to the problem of interprocess or terminal/process or terminal/terminal
communication. The job of the TCP is merely to take a stream of messages produced by one
HOST and reproduce the stream at a foreign receiving HOST without change.

4

Introduction

Let us begin with the assumption that we want to interconnect several distinct, resource-
sharing computer networks. Each of these networks connects together HOST computers whose
resources can be shared among the users of the network. If we are to achieve a similar ability

between HOSTS residing in different networks, we must find a way for a HOST in one network
to reproduce, without alteration, a stream of messages originating from a HOST in another
network.

This is a primitive but essential necessity, and the mechanism we devise to do this will be
called the International Transmission Protocol. This HOST level protocol will be implemented
through a HOST program called the Transmission Control Program (TCP).

Consider a typical computer communication system. It is generally made up of nodes (packet
switches, line switches, concentrators, multiplexors), and some communication medium
connecting the nodes (telephone lines, wave guides, laser beams, radio or microwaves, satellite

transponder, etc.).

HOST computers are connected to the nodes in some fashion, and messages from one HOST
to another are passed through the network.

The interconnection of two networks can be achieved through an interface or gateway which
is connected to the nodes of two or more distinct networks (conceptually, it might be enough if
two nodes were connected directly, but had software making each node regard the other as a
HOST on its own network).

The gateway must accept messages from one network and pass them to another, reformatting

the message as necessary for transmission in the new network.

If we treat the computer communication system of each network as a complicated

communication line joining HOSTs and Gateway, then the Gateways appear to be international
nodes, joined by two or more networks, facilitating communication between HOSTs.

5

HOST

HOST

HOSTCYCCLADES

gateway

gateway

NPL

ARPA

H G G H

H

The international transmission protocol (ITP) described herein is intended to:

1. Be resistant to failures in intermediate constituent networks and gateways.

2. Be unaffected by the maximum message sizes permitted in constituent networks and by

intra- and inter-network timing idiosyncrasies.

3. Be capable of exactly reconstituting a message stream originating in a foreign HOST.

4. Provide for high bandwidth and/or low delay transmission.

5. Require no status information in gateways.

6. Be relatively easy to implement.

7. Permit the receiving HOST to control the flow from the sending HOST.

6

Key Issues and Gratuitous Comments

A fundamental assumption behind the ITP is that message sizes are not uniform throughout

all networks which are likely to be connected. It is tempting to try to pick a message size which
all networks can transmit without alteration (e.g. 255 bytes), but our guess is that such an attempt
is unlikely to succeed.

The inherent variability in message size accounts for much of the rigidity of the ITP. In

another, as yet unpublished, position paper, R. Kahn proposes a scheme which appears more
flexible. Kahn’s design is based on a Simple Message Switched Protocol (reference Walden and
Bressler), and solves the variable message size problem with a different message identification

scheme than the one proposed for ITP. It is still not clear which of the two strategies, ITP or
SMSP, is simplest.

The International Transmission Protocol Message Format

Messages are made up of a fixed length header, containing control and addressing

information, an integral number of fixed length elements containing the text of the message, and
space for an optional checksum (see figure 2).

header … checksum

Text

Figure 2

Message Format

We will take up the issue of variable element size later, but for the present we will assume a
default size of 8 bits/element.

The ITP is resistant to failures in intermediate nodes and gateways. This is accomplished by
arranging for positive acknowledgement of receipt of message by the receiving HOST.

Furthermore, sending HOSTs are expected to time-out and retransmit messages which have not
been acknowledged.

7

Any time-out and retransmission scheme requires that the receiver have the ability to detect

duplicate transmissions. The ITP is no exception. Each message header carries a unique (short
term) identifier which will be duplicated if the message is retransmitted.

The form that the unique identifier must take is determined in part by the fact that messages

crossing through a gateway may require breaking into more than one message which may not be
reassembled before delivery to a HOST. How can we uniquely identify the pieces of the broken
message?

One solution to this problem is to uniquely label each element of the message, tacitly

assuming that no gateway will break up a message into pieces smaller than one element, nor will
messages be broken other than at element boundaries.

← W → ← element ID space →

0 1 2 K 0 1 K–1 K 0 1 2 K

…. … … …

Figure 3

Bit stream, parsed into frames of k+l elements.

W is the open window size.

In figure 3, we see a bit stream which has been parsed into a uniform, unbounded sequence
of elements. Each element has an associated identifier which ranges from 0 to K. If we define
frame size to be K+l bits, then the ID of any given element is just its left bit ordinal modulo the
frame size.

In order to permit a receiver to control the total traffic from a sender, the sender is

constrained to have no more than W bits outstanding (unacknowledged) at one time. Initially,
W = K/2, but can be reduced by the receiver. Note that W cannot exceed K/2 for reasons

which will be apparent later.

A message can be made up of several sequential elements, and it is sufficient to identify the
leftmost of these, while giving a count of the total number of bits in the message. Thus, the
header format begins to look like Figure 5.

8

Source Addr Dest Addr Message ID Bit Count Element Size Other

leftmost element ID

Figure 5

Header Format

If a message arrives at a gateway which finds that the message must be broken into pieces for
transmission, each piece will have the same format. Since the text of each piece is constrained to
consist of an integral number of elements, we can easily assign the correct unique identity to

each element (see figure 6).

ELEMENT COUNT

header j j+8 j+16 j+24 j+32

Source Dest Left ID bit count element size other CC

=j =40 =8

LEFT ID

a. Original Message

Header text checksum

Source Dest Left ID bit count element size other j j+8 j+16 CC*

=j =24 =8

Header text checksum

Source Dest LEFT ID bit count element size other j+24 j+32 CC*

=j+24 =16 =8

b. Two new shorter messages

Figure 6

Message Breakage

ELEMENT
SIZE

9

Clearly, it is necessary that all networks have the capability of sending a message consisting

of the header, checksum, and one element without breakage. Note that the element size (in bits)
is carried in the header to facilitate gateway message reformatting.

Retransmission, positive acknowledgment and duplicate detection

Earlier, we alluded to a window size, W, which represented the maximum number of bits the

sender was allowed to have outstanding (unacknowledged) by the receiver. Initially both sender
and receiver have the left edge of the window positioned on bit 0 and the right edge on bit W–l.
(W ≤ K/2).

The receiver uses the window to detect duplicate transmissions. When a message arrives, its
left element ID is compared with the left edge of the window. If these match, the window is
advanced to the right as many bits as the bit count indicates. As an acknowledgment the receiver

returns to the sender the current left edge of the window. If the incoming message ID does not
coincide with the present left edge of the window, the receiver determines whether the elements
received lie inside or outside the window. If inside, the receiver can either ignore the elements,

or mark them received, but not acknowledged. No acknowledgment will be sent for these
elements until the missing elements to the left have all been successfully received. However, if
the receiver sends as an acknowledgment the current left window edge, this may serve to

stimulate retransmission of the missing elements. If the elements lie outside the window, then
they are discarded, and an acknowledgment bearing the current left window edge ID is sent to
the sender.

In fact, these acknowledgments are sent “piggyback” with other messages traveling to the

source using a new field in the header labeled ACK (see figures 6 and 7). If no messages are
awaiting transmission, then an empty message is sent.

Source Destination Left Element ID Bit Count Element size Left ID ACK Other

HEADER FORMAT

Figure 7

The sender transmits a group of elements as a message and starts a time-out. If the sender

times out before an acknowledgment for the elements is received, the sender retransmits the
elements. In the simplest implementation, out-of-order acknowledgments are ignored (ultimately

10

causing retransmission). In the more complex implementation, they are accepted and the

associated elements marked as successfully acknowledged. The sender does not advance the
window to the right unless it receives acknowledgments for elements lying consecutively to the
right of the left window edge.

One can easily be convinced that the sender can never advance the left edge of his window
beyond the left edge of the receiver’s window (flow control), and barring total disaster, all
elements are eventually acknowledged, even if they require retransmission. Furthermore, the

receiver has no trouble distinguishing between duplicate and original elements.

There are several important points to notice. First, the receiver can actually advance his
window until its left edge is W bits ahead of the sender (all elements received, but all
acknowledgments lost). Since the sender will ultimately retransmit to prompt the receiver again

for acknowledgments, it is important that the receiver not confuse a retransmitted element for an
original one. If W > K/2, where K+l is the frame size, then such confusion can occur, hence the

restriction W ≤ K/2.

The second point to notice is that a range of implementations is possible, ranging from purely

sequential receipt and acknowledgment to a more complex implementation allowing non-
sequential receipt and acknowledgment.

The third point is that negative acknowledgments are accomplished implicitly if the receiver

acknowledges only the left window edge on receipt of elements within but not contiguous with
the left window edge. If the sender keeps pointers to current left edge, last sent, and right
window edge elements, then each acknowledge which fails to advance the sender’s left window

edge can be treated as a negative acknowledgment.

Flow Control and Element Size

Initially, the communication channel between TCP’s is assumed to consist of 8 bit elements
with a window of W = K/2 bits where K + 1 is the frame size.

The receiver may want to change the window size (as may the sender), and either may want

to change the element size.

11

Such changes must be done in a controlled manner, so we postulate the existence of control

messages sent from one TCP to another. The message format, since it embeds control messages
within the data stream, must signal the presence of a control message by a flag in the header.
Figure 9 shows the message header format.

Source Destination Left Elem ID bit count Elem size Ack Type Text CC

Message Header

Figure 9

For the moment, only three types of messages are proposed.

a. Type 0 = regular message for a processor terminal

b. Type 1 = control message

c. Type 2 = status message

Suppose the receiver wants to tell the sender about a new window size W'. The receiver

sends a control message “DO SETWINDOWSIZE W'.” The sender will not respond until the
window can be either reduced or expanded on the right to size W'. When this occurs, the sender
responds with “WILL SETWINDOWSIZE W'.” Notice that the window should not be expanded
beyond W = K/2 nor should it be reduced (right edge moved leftward) over previously,

acknowledged elements.

Element Size

In an early design, it was assumed that all messages in the stream from one TCP to another

would consist of messages with the same element size. This size could be changed by negotiation
between TCP’s. Once we realize that control messages must be embedded in the stream, it is
made easier to imagine that every message carries information about element size, and is

guaranteed to consist of an integral number of elements, but each message may have a different
element size. This permits the multiplexing of messages between several processes with different
length elements, but still gives a good flow control mechanism to the receiver. Since message

ID’s are at the bit level, out-of-order message can still, with some work, be inserted in the correct
place in the circular buffer whose length is W bits.

12

Since each message can have a different element size, there is no need to negotiate to change

it.

Checksum

The checksum is optionally computed over the header and message text. If not computed,

this field is all 1’s, otherwise, it contains a folded checksum. If the originating TCP fails to put a
checksum in (i.e. field is all 1’s), then at some point at or before the first gateway, this checksum
should be computed and put in its proper place.

If a message is broken up, the new pieces should have checksums generated by the gateway.

Messages which fail to pass the checksum test should be discarded (and negative

acknowledge produced—e.g. current and unmoved left edge of window).

Routing

Initially, the gateway destination should be selected by the TCP from a table of networks

versus gateway addresses. The constituent network nodes may choose to re-route messages
which are destined for highly congested areas.

Addressing

We take the position that only sufficient addressing need be provided to get a message to a
particular TCP. The address field must be broken into a subfield for network, and one for TCP

identifier (see figure 10). Although it is not mandatory, most large networks may prefer a
hierarchical addressing structure

8 24

Network TCP-ID

Figure 10

Source or Destination Address

in which the TCP-ID is broken into sections. This is purely up to each network.

13

PROBLEM AREAS

1. Setting time-outs for retransmission

2. Header field sizes:

a. element size – 8 bits

b. left ID – 16 bits

c. bit count – 16 bits

d. address – 32 bits

e. checksum – 16 bits

f. ACK – 16 bits

g. TYPE – 8 bits

3. Keeping status table sizes down (Walden’s Link Table idea).

4. Note: I went to bit addressing instead of element addressing because it became clear that

I want to multiplex messages of many different sizes along the same TCP-TCP
connexion.

5. Status information obtainable by TCP from distant TCP? (machine word size, window

size, TCP performance data…).

6. Error messages?

7. How to propagate internal network status to HOSTs via ITP? (e.g. HOST DEAD MSG

NOT DELIVERED).

8. Gateway Accounting?

9.

10.

