IEN # 18 J.U0. Burchtfiel

Supercedes: None oW, Plummer

Replaces: None ' .S, Tomlinson

BON

Section: 2.4.4.3 28 October 1976
IEN # 18

Proposed Revisions to the TCP

Jerry 0. Burchfiel
Wiltliam Plummer
Raymond S. Tomlinson

Bolt, Heranek and Neuman, Inc.
50 Moul ton Street
Cambridge, Mass., 82173
18/26/13976

Unknown
IEN18A.pdf: This version of the document was scanned directly to PDF format. (IEN18.pdf is the OCR version.)

IEN # 18 TCP Hevisions /21071976
By way of example, consider the foliowing "vorst” case <cenario:

{1) Asaume the Sender sees a B windouw and i¢
blocked with 18 l-character letters uaiting,
to be sent.

(2) The receiver does one 18-character RECY oand
sends this 180 character wuindou to the
Sender.

(3) The sender sees the uindow open and sonds
all 10 tetters each with EQL, Note that the
uindow has not been violated.

(4) The Receiver receives the first of the ten
letters and returns the one RECV buffer to
his user because the EOL forced completion
of the buffer. An ACK is nou returned to
the Sender which specifies a windou of @
bytes.

%) Since the netuork is slou, the Sendar
continues 1o retransmit the 18 letiers.
Note that the initial retransmission rate is
high in most implementations.

(6) The user on the Receive side does another
RECY, Since his TCP is being flooded with
packets from the sender, he stands onlu a
1718 probability of getting the "right" next
packet. After some amount of processing in
order to determing that the current packet
is urong, he will try again.

(7) Eventually the sender receives the packet
saying that the wuindow has closed doun to
zero, and ceases retransmitting. At this
point one packet wuill have been ACKd and
deleted from the retransmission queue.

(8) Somewhat later an ACK packet wuill arrive
which specifies another 18-character uwindoun.
This is generated uhen the second BECV uas
done. This will allou the sender to
generate one more l-character letter,
replacing the one which uas acknouledged.

IEN # 18 TCP Revisions 10/26/1976

Experiments with TCP have shoun it to have marginal performance
and also be lacking certain functions. Under cortain
saource-destination letter size to buffer size micmiatch
conditions, real-timc response has been poor and excoosive
netuork traffic generated. The CPU load caused by running TGP is

much higher than with simpler, e.g. NCP, protocols. Suggestions
"are made in the follouwing which will improve these deficiencics,
Since several of the improvements uwill require neu packet formats

and large scale softuare changes to existing TCP's, we suggest
that they all ‘be done in one large change, yielding "Protocol
Version 3".

1. New Sequence Number Scheme

Because the current protocol permits using sequence number space
without wusing (user) buffer space by sending control information
(INTERRURPT, DOSN, etc.) a receiving TCP cannot do partial, out of
order reassembly of the incoming data; instead, it must store the
packets and pass them to the user in order in case there miaht be
control information in one of the packets. This results in
complicated and time consuming computations in order to do the
reassembly process and a high load on the free storage area if
any reasonable size uindou is being used.

To correct this we will use a 24-bit sequence number space for
data bytes and a 8-bit space for control information. Since
control information is to be interpreted as occurring "betuecen”
data bytes so that overall sequencing remains correct, the
control sequence may be thought of as a fraction of the data
' sequence. Many of the current routines which deal with scquence
numbers in the current TCP will still work if the 24-bit data
sequence is handled as the most significant bits of an overall
32-bit sequence number.

The advantage in this arrangement is that a receiving TCP can
infer the address of each data byte by looking at the data
sequence number at the time of reception. This allous placing
the data in the user’'s buffer at this time; no actual reassembly
is needed even though packets may arrive out of order.

For this scheme f{and previous versions!) to function correctlu,
we require that an INTERRUPT not be sent if any other control is
outstanding, especially a previous INTERRUPT. As uwith the
previous protocols, nothing may be sent -after the end of a
sequence (i.e., after a DSN or FIN)} without first re-establishing
a valid sequence.

~

IEN # 18 1CP Revisions 187671976

Example: Assume 6 packets are sent: (1) 3 bytes. of data, () 2

control bytes, (3) 2 controls, (4} 2 data, (B) 2
leading controls pius 3 data, and (G} 1 data bylte. 1 f
the current data sequence is 188 and the control
sequence is B, the packets uill have the folloning
seqguence numbers:

180(31.81001 13 of data at sequence 18U. No control.
ie3el,g2] 12 controls, sequenced after previous packet.
183181,212] +2 more contrals, after previous ones,
1831021,4 18] +More data. Note control scquence,
1851[31,817] ;Data only. Note control scquence reset.
1081(11,0818] :The final data.

Thus, in a packet containing both controls and data the
controls are sequenced before the first data bute.

A problem arises uhen the 8-bit control sequence field overflous.
To simply let the carry go into the data field almost vorks but
destroys the simple relation betueen data sequence number and
user byte address. The receiving 1CP is made anare of ihe change
with DSN. Thus, if a control byte is to be sent and the control
sequence is at 377 (octal) a DSN is sent, folloued by a G&GYN at
ISN,B8 uhere ISN is the "initial scquence number" which is ucared
to time. Of course, DSN will continue to be used as it was in
the old protoco! in addition.

2. Windowing

During testing of TCPs using server and user programs uritten by
different individuals, it was noted that transmission became very
inefficient with many retransmissions required to get even a feu
letters across a connection. The problem was eventually
identified as having to do uwith three factors:

% A mismatch in the size of the RECV buffers ({(large)
and the size of the letters sent {small). This i
the major problem area.

% Long delays in the netuork and/or slou processing in
the 1CPs, causing window information to be stale.

¥ The design choice made in the receiving 1CP to
discard all packets on a connection except the onec
specifically required. This is a valid technique;
retransmissions by the sender should eventually
supply the needed packet.

-2 -

TIEN # 18 1CP Revisions 10/26/1976

Nnie: Should the user on the Send side
decide to suitch to 18-character huffers the
per formance improvement wilt nat be
immediate. For some time afteruards the 0P
ti chop the bigger buffers into
l-character packets, because the receiving
1CF is acknouledging only single characters.
Thus, the "bad" performance uill continue
unlil all of the single character letlers
have been acknouledged by the receiver.
Until the improvement actually happens, both
ends of the connection will be generating 18
times as many packets (in the example) as
necded, and using 10 times as much computing
pouer.

In this example, the culprit uas the EOL which wuent along wnith
the first letter. It was this which caused the niindou to
decrease to B. In effect it claimed the 9 unfiiled bytes in the
RECVY buffer. But the Sender had no way of knowing this -~ hn has
no information about how big the buffers are on the RECV side.

In general the situation arises because EOL (end-of-letter signal
from a sender to a receiver) will claim an unknoun amount of
buffer space. The existing protocol has no way to cause the
sender to decrease his available window by the number of buytes
implicitly sent by the EOL which caused a RECY buffer to
conplete. In a sense it has been filled with non-existent bytes
uhich do get removed from the window because the buffer gets (by
definition of EOL) returned to the user.

To cure this une extend the protocol by defining contents of the
windouw field of a packet as being the size of the user’s BRECV
buffers if (1) the sending TCP does not already knou this for the
connection in question, and (2}, the number in the windou field
is not zero. Note: Heceive buffer size remains constant for the
life of the connection. To insure reliable transmission of the
buffer size information, the ARQ control bit should be on in the
packet which carries it. See Section 7.

The buffer size informotion is used by the packetizer process in
a sending TCP to compute the actual amount of uindou space that
can be used. Each actual data byte sent decreases the available
windou by one. Sending an EQL decreases the available uindon
(advances the packetizing sequence number) by all of the bytes
remaining in the current buffer (uhich may be zero). Sending an
INTERRUPT will also cause completion of the recceiver’s current
buffer. Packet ends need not correspond with buffer ends.

-4 -

o——

JEN # 18 1C1 Revisions | 18/:6/1976
3. Checksum and Fragmentation

fFor the near future the original fragmenting concepts will be
retained. Specifically, only the last fragment (marked uith LU%)
uill carry a checksum. The checksum found in fragments with E05
on will be that for the entire segment, as copied {frow the
fragmented parent. This is an end-to-end check and haus the

advantage of requiring little computation by gateunays and wmakes
it possible to change the current checksum function uithout
changing all of the gateways. Destination T(P's will not be
burdened by having to checksum the fragments.

Lith the exception of the BOS and EOS bits, the Datalenath, and
the SequenceNumber, the headers of all fragments can be the same.
This is a consequence of the fact that none of the information in
the packet (DSN, ACK, etc.) can be acted on until the wuhole

segment has been reassembled. It is not until then that the
segment checksum can be verified. After an entire scament has
been reassembled, all of the information in the segment will be

processed at one time and an ACK issued. The fact that atl
fragment headers may be nearly the same simplifies the antenay
code since it does not have to be very selective in constructling
the fragment headers. No problem arises because tuo fraoments
have (say) two INTs on because the header was copied from the
parent.

There are a feu comments which bear on segment reassembly.
First, packets (fraguents) uhich are outside of the wuindoun are
rejected on the basis of their apparent, unchecked Sequencellunber
or ACKSequence (if not synchronizedl. If the packet has LUS on,
the entire header is saved, at least conceptually, for later
checksum verification. Since the ACKSequence and Windouw of a
packet may change from one retramsmission to the next, care must
be exercised so that these fields and the checksum uscd for
validation are taken from the same packet header, i.e. the one
marked with EQ0S. The checksum function is computed for the data
portion of the packet and "added" into what will be the checksum
of the entire segment. Since the SequenceNumber tells uhere in
the user’s buffer this data belongs, the data may be transferred
there directly. '

As fragments are received and the data moved to the user’s
huffer(s), the T1CF nmust keep a table which describes the
portion(s) of the segment which have been filled, Fraguents
received from different gateuays may overlap so not every packet
processed wuwill contribute to filling the missing data by an
amount equal to the Datalength of the fragment. The TCP must be
able to know the data length of the original segment for use in
the header checksum computation houever.

-5 -

-

o~

IEN # 18 T1CP Revisions 107671976
Llhen a set of fragments big enough to cover the entire scament
have been processed, the TCP will know the value of the chocksum
function over the data portion(s) and uill have cnough

information to reconstruct the header associated nith the entire
scament. The checksum of the hecader is generated and conmbhined
uith that for the data. [If it is zero, the scgment is valid ond
all of the control information including ACK if present wmup be
acted on. If the segment checksum turns out bad, the entire
segment is forgotten and the TCP waits for retransmissions.

4. Hal f-Open Connections

A solution to the problem of dealing with half-open connections
has been found., Because of this, there is no longor a nced for
the "HL.SET(connection)"” control caommand, and TCP code has been
made simpler.

Basically, the change is to the interpretation of the £ 47 "no
such TCB" error mocsage. Tupically, this error will boe gencrated
by a TCP which has crashed and restarted upon receipt of a packet
for a connection which existed before the crash. The ALKSequonce
of the error packet uill acknouiedge the entire packet uhich
provoked the error reply and its sequence number will he taken
from the ACKSequence of the provoker, uhich guarantees that the
error packet uwill be acceptable for processing by its receiver.
A TCP receiving an acceptable EFP+7 error packet should delete
the TCB associated uith the connection and inform the user otming
the connection of the fact.

[t is possible for delayed copies of packets from a previous
incarnation of a connection to arrive at a TCP uhich has alrecady
closed the connection. These will also elicit EIP47 errors.
Should a delayed copy of one of the error packets arrive at the
other end, uhich has by then opened a neu incarnation of the
connection, it will not be acceptable for processing beocause
(depending on the state of this end) its Sequence number or
ACKSequence uill be out of bounds due to the propertics of the
Sequence number selection algorithm.

—

IEN ¥ 18 1CP Revisions 10/00/1976
5. ABORT User Call
A reu user call "ARORT{connection)" has been implemented. This

simply deletes the local copy of the 1CB after sending an b7
error to the remote end. Note that sending this error packet is
a courtesy and is not required. The other end uill find outl that
the connection has gone auay if it attempts to send a packel on
it ~- see the description above.

ABORT is intended to be used by a user when he has (for instance)
given up on trying to CLOSE a connection. This can occur if the
remote end has become very slow at processing data sent to it,
and never makes it to the point of handling the FIN (uhich is
sequenced) .

IEN # 18 1CP Revisions 10/26/1976

6. Optional Information in Header

N.B. The discussion uhich follous pertains not only
to TCF packets but also to InterNet packets.

Timestamp{s) and seccurity information are examples of information
which might appear in sowme packets but not others. Thus, it
tiould be wasteful to preallocate fields in the header of all
packets to hold this data. Instead, we will permit using the
area belueen the end of the actual header and the beginning of
the data. The presence of this optional information s
discovered by noticing that the HeaderLength of the packet in
gquestion contains a nunber larger than the minimum header lenath
required by the protocol.

Within the options area uill be found any number of repetitions
of the pattern "1 byte of count, 1 byte of kind, and N butes of
actual option information". This permits an arbitrary amount of
option information to be added to any InterNet or TCP packet. In
particular, nultiple timestamps may be added.

One special code will be specified here: B in the count and kind
bytes of any option will be understood to mean “this ic a null
option which occupies all of the space remaining in the options
area". This assignment permits padding the header with buytes
containing =zeros as is nou done in the TENEX TCP in order to
align the beginning of the data area with a word boundary inside
TENEX.

The fine-structure of options is not specified here. Une rule to
be folloued in designing options is that they must bc a multiple
of 16 bits in length to avoid complicating progranming in
minicomputers. Multiples of 32 bits are favored even more due to
limitations of some common higher-level languages.

The reader should not confuse the InterNet Format field
indicating "Secure TCP" or not, and the (possible)l existence of
options of the kind "security information". The Format field is
purely a specification to gateways of uwhat fragmentation
algorithm is to be used, independent of what is in the packet.

IEN /1 18 1CP Revisions Y0/0671976

7. Acknouledge Request (ARQD) Control Bit

It frequently: occurs that information such as windon size or
buffer size must he passed reliably across a connection.
Normally these are not acknouledged, but in some cases the sonder
must knou that the information has been heard by the roceiver.,
Thus the ARQO bit has been added to the Control Flags field of 1P
packets. This occupies one slot in the control scquence space
and must therefore be acknouledged by the receiver. The evact
position of AROQ in the packet is shoun in section 11. ARU is o
be processed after INT (uhich is after SYN}, but before the
packet data or "trailing controls”.

8. Detete FSH (Flush) Control Bit

FSH was originally intended to be used to "clear the pipe” S0
that a FIN could be forced through to the remote 1CP. This was
needed to guarantee prompt closing of connections. Lith the

above discussion of half-open connections and the ABORT call,
there is no longer a need for FSH.

g, Delete REJect

No use is seen for the REJect primitive in the protocol. [t may
safely be deleted.

10. Delete the T (Trace Control Bit)

The T bit of the 1CP header control flags was previously uscd
to control timestamping. Since timestamping is an InterNet
function which can apply to non-TCP packets, it cannot be
controlled by a TCP header bit. The definition of the 1 bit
has been deleted.

11, Yersion 3 Packet Format.

The revised packet format is shoun belou. It is nearly the same
as the Version 2 format, The major differences are in the
deletion of several control bits, and the space provided for
options.

g ~

IEN #7118

InterNet Header

Bute £
Puytes 1-3:
Buyte 4;
Biytes 5-7:
Bytes &-9:
yte 18:
Byte 11:

Bits B-3:

1CP Header
Bits 4-7:

Bytes 12-15:

Rits

Bytes 16-17:
Bytes 18-19:

Byte

Bit g
Bit 1:
Bit 2:
it 3
0it 42
Dit o
Bit G
flit 7
Bit &
Bit NH
Bit 18:

Bite 11-17:
Bits 13-15:

20

Buytes 21-23:

Bute

24

Bytes 25-27:
Bytes 28-31:

Byte

Optional Data

s 32-33:

Bytes
Byte 0:
Byte 1:

Actual

Bytes 2-(2+10):
Bytes (34+424L0) - (3442+L0+2+L1-1):

B-23:
Bits 264-31:

1CP Revisions 10/26/71976

{I11.5 bytes)

llestination Network
llestination TCP (host)
Source Netuork '
Source TCP (host)

Data Length (in bytes)
Header Length {(in bytes)
13 Hex
Format=1 for TCP. {2 for Secure 1CP, ctc.)
TCP Protocoi Version = 3

Sequence Number

Oata Sequence

Control Sequence

Lindow for data

Control Flags

SYN

ACK

FIN

DSN

EOS

FaL

INT

(unused)

BOS

(unused)

ARQ

{unused)

Control Dispatch (1 for ERROR, 2 for SPECIAL)
Control Data (for ERRORs, etc.)
Destination Port {socket)

Label (for debugging}

Source Port (socket)

ACK Sequence-

Checksum

begins here if HeaderLength > 34.
34-(34424L8-1) ¢

Option @
LB (length of Option 8 in bytes)
K@ (kind of Option 8}
flata associated with Option 9
Option 1

TCP Packet Data begins here
Bytes (HeaderlLength) - (HeaderLength+Datalength-1):

Data

- 19 -

